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Abstract-There have been observations showing that relatively thick metal layers in metal--<:eramic
laminates lead to the formation of multiple periodic cracks within a zone near a pre-crack, dis­
tributing damage and significantly enhancing the composite's toughness. Several models including
linear elastic fracture mechanics and shear-lag analysis are developed in the present work in order
to study the competition between multiple cracking and single-crack extension as damage modes.
It is established that there is a critical thickness ratio for metal--<:eramic layers above which multiple
cracking dominates. Moreover, this critical thickness ratio is inversely proportional to the cor­
responding moduli ratio such that the competition between damage modes is governed by the metal­
ceramic layer stiffness ratio. Plastic hardening of metals helps to activate the multiple-cracking
damage mode, while plastic yielding does the opposite.

1. INTRODUCTION

Metal--eeramic laminates are an important class of composite materials because they can
be readily fabricated while controlling interfacial and constituent properties (e.g. Evans et
al., 1986; Dalgleish et al., 1988). The mechanical properties of metals, ceramics, interfaces
and other parameters, such as ceramic volume fraction in a laminate, can be chosen to
maximize the desired mechanical properties of the laminate. The toughening of ceramic
composites has always been a major concern with regard to their application; therefore,
achieving the highest possible toughness of ceramic composites has been the aim of many
researchers (e.g. Dalgleish et al., 1989).

The toughness of metal--eeramic laminates originates in the plastic deformation of the
metals. The microcracks in brittle ceramic layers generated by applied loading or residual
stresses may be arrested by neighboring metal layers (Cao and Evans, 1991), which leads
to plastic deformation in the metal layers. The crack tip stress concentration is significantly
dissipated due to plastic flow, thus the toughness of the laminate can be increased.

Different damage modes in metal--eeramic laminates have been observed. Deve and
Maloney (1991) and Deve et al. (1992) found that the formation of a zone of periodic
cracks is one damage mode, and the extension of a (single) dominant crack is another.
They established that the former mode distributes the damage and significantly enhances
the composite's toughness. The aim of the present paper is to study conditions that will
facilitate this multiple-cracking damage mode.

A simple criterion separating these two damage modes based on the perspective of
maximum stress in ceramic layers is developed in Section 2. This criterion is carried out in
the following sections by different methods, including linear elastic fracture mechanics and
the shear-lag method, in order to study the effect of metal--eeramic layer thickness ratio,
moduli, and plastic yielding and hardening on the competition between the multiple­
cracking mode and the dominant crack extension mode.

2. MULTIPLE CRACKING VERSUS SINGLE-CRACK EXTENSION

Shaw et al. (1993) studied the nucleation of a microcrack in ceramics across a metal
layer in metal--eeramic laminates. Ceramics are brittle and vulnerable to microcracking,
while the plastic flow in metals dissipates the stress concentration in metal layers in order
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Fig. 1. A configuration of metal-<:eramic laminates; (a) crack renucleation in a ceramic layer: (b)
single-crack extension in ceramic layers after crack renucleation; (c) multiple cracking ceramic

layers after crack renucleation.

to avoid microstructure damage and to provide the toughness of a composite. As shown in
Fig. 1(a), a pre-existing edge crack in metal--ceramic laminates results in stress concentration
ahead of the crack tip, thereby nucleating a microcrack along the crack plane in the next
ceramic layer [layer C j in Fig. I(a)]. This so-called crack renucleation phenomenon has been
studied by Dalgleish et al. (1989) and Cao and Evans (1991). The renucleated crack
penetrates the ceramic layer and is arrested by two neighboring metal layers. After crack
renucleation, ifmetal layers remain intact [as shown in Fig. I(a) by darkened metal segments
in the crack plane], multiple cracking or a single-crack extension may occur. Shaw et al.
(1993) pointed out that, subsequent to crack renucleation, relatively thick ceramic layers
lead to damage in the form of continuous microcracking in the adjacent ceramic layers
along the plane of the pre-existing edge crack [Fig. I (b)] and that thin ceramic layers cause
the formation of multiple periodic cracks within a zone near the pre-crack [Fig. I(c)]. This
formation of a multiple-cracking zone distributes damage and significantly enhances the
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composite toughness as compared to the extension ofa dominant crack (Deve and Maloney,
1991; Deve et al., 1992).

The objective of this paper is to quantitatively determine the critical thickness of
ceramic layers below which multiple cracking prevails over single~crack extension in metal­
ceramic laminates. A configuration of metal-eeramic laminates after crack renucleation
[Fig. 1(a)] is used in the present study. In this configuration, the maximum stress in the
ceramic layer in which a microcrack has been renucleated [layer C1 in Fig. I(a)] occurs
somewhere above the crack plane. This maximum stress, (JmaH is compared to (Jo, the stress
on the crack plane in the next (unbroken) ceramic layer [layer C2 in Fig. I(a)]. If (Jmax is
larger than (Jt» the next microcrack will be nucleated at the site of (Jrnau i.e. somewhere
above the renucleated crack in the same ceramic layer (layer c1). Therefore, multiple
cracking will dominate when (JUl" > (Jo. If (Jm., is less than (Jo, the next microcrack will be
nucleated in the next (unbroken) ceramic layer (layer cJ along the crack plane such that
single-crack extension prevails.

It is evident that this critical thickness of ceramic layers, or the critical thickness
ratio of metal-eeramic layers, which distinguishes multiple cracking from a single-crack
extension, depends on elastic properties of the metal and ceramic, the plastic yielding and
hardening of the metal, and the pre-crack length. Different models to examine the com­
petition between multiple cracking and single-crack extension in metal-eeramic laminates
are proposed in the following sections: a fracture mechanics analysis is presented in Section
3, and several shear-lag models are presented in Section 4. For simplicity, the analysis is
limited to two dimensions, i.e. plane~strain analysis.

3. LINEAR ELASTIC FRACTURE MECHANICS ANALYSIS

We begin the examination of the critical metal--eeramic thickness ratio by considering
the simplest laminates-metal and ceramic layers are elastic with the same elastic properties.
(The effects ofmetal plasticity and the metal-eeramic moduli ratio are examined in following
sections.) Thus, the laminate can be considered as a uniform medium. As shown in Fig.
I(a), there is a pre-existing edge crack ofIength ao starting from the left edge of the metal­
ceramic laminate. The thicknesses ofthe metal and ceramic layers are tm and te , respectively.
The laminate is subject to remote tension, (100, in the laminate direction. A microcrack has
been renucleated in the next ceramic layer (layer c1) along the pre-crack plane, while the
metal layer between the two cracks remains intact. For simplicity, it is assumed that there
are many unbroken layers to the right of the renucleated crack, so the effect of the right
boundary of the laminate is neglected.

The stress distribution in the metal-eeramic laminate can be analysed using linear
elastic fracture mechanics (LEFM). The pre-crack and the renucleated crack are modeled
as two continuously distributed dislocations (Rice, 1968), which leads to two integral
equations governing dislocation densities for two cracks. These integral equations, given in
the Appendix, are solved numerically along the lines proposed by Erdogan et al. (1973).
The stress variation over thickness direction in each ceramic layer is small because ceramic
layers are thin compared to the pre~crack length, Le. te « ao ; therefore, the stress in ceramic
layers is well approximated by the average stress over the thickness. The average stress in
the ceramic layer that contains the renucleated crack [layer C1 in Fig. I(a)] is

(1)

where the origin of the coordinate (x,y) coincides with the pre-crack tip, and the x-axis is
normal to the laminate direction. The average stress in the next (unbroken) ceramic layer
[layer Cz in Fig. I(a)] is
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Fig. 2. Axial stress distribution in the ceramic layer that contains the renucleated crack, where
Em = E" 1m = I" V = 0.3 and ao = 5(tm+tJ·

(2)

The maximum stress in the ceramic layer that contains the renucleated crack, am." and the
stress at the crack plane in the next (unbroken) ceramic layer, ao, are of particular interest.
They are given by

(3)

respectively. The maximum stress, am.. , occurs somewhere above the crack plane, as shown
in Fig. 2, in which 0'1 (y)la'" is plotted versus Ylte for tm = t" v = 0.3, and ao = 5(tm + te).

From a dimensional analysis, am• x and aomust have the form

co ~I (tm ao )()max = (J • "'-'max -, ~--, v
te tm +te

(4)

(5)

where a'" is the applied stress, and L~.x and L~ are nondimensional functions depending
on the metal-eeramic layer thickness ratio, pre-crack length and Poisson's ratio, v (v is the
same for metals and ceramics, as assumed). The normalized pre-crack length, aol(tm+fc),
gives the number of pairs of metal-eeramic layers that are cut before the load is applied to
the laminate. For thin metal layers, the effect of the renucleated crack is easily transmitted
to the next (unbroken) ceramic layer [layer C2 in Fig. lea)], so ao is larger than a max ' For
thick metal layers, the opposite occurs (i.e. ao < am• x) because the next (unbroken) ceramic
layer is relatively far from both cracks. Therefore, there exists a critical metal-eeramic layer
thickness ratio, (tmlte)erit' at which am• x = ao. From eqns (4) and (5), this critical thickness
ratio must have the form
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Fig. 3. Critical metal-eeramic layer stiffness ratio, (Emtm/Eete), which separates the multiple-cracking
damage mode from single-crack extension, versus pre-crack length, 00/(tm+ te).

( tm) (ao )- =fLEFM --, V •
tc cril tm + tc

(6)

The nondimensional function, fLEFM, versus the pre-crack length, ao/(tm+ tc), is shown in
Fig. 3 for Poisson's ratio v = 0.3. This curve separates the regions of multiple cracking and
single-crack extension. For a pre-cracked metal-ceramic laminate, if the thickness ratio
tmltc falls below the curve, 0'0 is larger than O'max such that single-crack extension prevails.
Multiple cracking will dominate if the thickness ratio is above the curve because O'max > 0'0'

The curve in Fig. 3 is very flat for ao > 2(tm + tc), which shows that the competition between
multiple cracking and single-erack extension is roughly independent of the pre-crack length,
except for very short pre-cracks. It must be emphasized that the effects of metal plasticity
and the metal-ceramic moduli ratio are not included in the LEFM modeL

4. SHEAR-LAG ANALYSIS

Shear-lag analysis has been successfully applied to metal-ceramic laminates (e.g. Cao
and Evans, 1991) and fiber-reinforced metal matrix composites (e.g. Budiansky et at., 1986).
In a shear-lag analysis, the stress, (im in the laminate direction in each layer is averaged
over the thickness. The laminate is subjected to remote applied stress, (i 00' There are shear
tractions in each layer at the interfaces with neighboring metal or ceramic layers. A shear­
lag analysis greatly simplifies the problem without losing its characteristic features. The axial
stress distribution, O'n(Y), is the average stress over the layer thickness and is independent of
x, where n is the layer number. For a metal-ceramic laminate, a shear-lag analysis leads to
a set of ordinary differential equations of O'n(y) (see the Appendix for details). Only the
upper half of the laminate (y > 0) is analysed due to symmetry. The boundary conditions
are

(in = 0 at Y = 0

on the surface of the pre-crack and renucleated crack, and

(7a)
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w" = 0 at y = 0 (7b)

for metal and ceramic layers that remain intact, where w" is the displacement in the nth
layer. A uniform applied strain, sXc, is imposed on the laminate to prevent sliding between
metal and ceramic layers in the remote field. The corresponding applied stress imposed on
the composite is

(8)

where f is the volume concentration of the ceramic and is related to the thickness of the
metal-eeramic layer by f = te/(tm + te) ; Ee = Ee/(l- v~) and Em = Em/(l- v~) are the plane­
strain elastic moduli for ceramic and metals, respectively.

4.1. Elastic model
A shear-lag analysis is particularly convenient for layered material with different elastic

properties and with plastic deformation. Though the method is readily applied to metal
layers that undergo plastic deformation, the analysis in this section is limited to elastic
deformations only. The governing equation becomes a set of linear ordinary differential
equations. The shear-lag stress distribution in the ceramic layer that contains the renucleated
crack [layer C 1 in Fig. 1(a)] is compared with the LEFM model in Fig. 2, where the modeling
parameters are Em = E" tm= teand ao = 5(tm+ te) ; Em and Eeare the elastic moduli of the
metal and ceramic, respectively. The elastic model indeed captures the feature that
maximum stress occurs somewhere above the crack plane, although the peak stress is less
than that estimated by the LEFM model. It is also observed that the positions of maximum
stress, ylte, predicted by these two models agree well.

For a metal-eeramic laminate with different elastic properties, the maximum stress in
the ceramic layer containing a renucleated crack, O"ma" and the stress at y = 0 in the next
(unbroken) ceramic, 0"0' must have the following form from a dimensional analysis:

(9)

(10)

where 1:s are nondimensional functions.
The stresses, O"max and 0"0, for a metal-eeramic laminate with the same elastic moduli,

Em = Ee, are plotted versus the metal-eeramic layer thickness ratio, tmlte, in Fig. 4, where
ao = 5(tm+ te)' As the ratio tm/teincreases, O"max exceeds 0"0 and multiple cracking dominates.
This has also been observed in the LEFM model. Therefore, for each moduli ratio, EmlEe,
and pre-crack length, ao, there exists a critical metal-eeramic layer thickness ratio above
which O"max is larger than 0"0 so that multiple cracking occurs. This relation between the
critical thickness ratio, (tmlte)erit (as determined by O"max = 0"0), and the ceramic-metal moduli
ratio, Ee/Em, is presented in Fig. 5 for short, medium and long pre-cracks, aol (tm + tJ = 1,
5 and 20, respectively. It is observed from Fig. 5 that a linear relation between (tm/te)erit and
EelEm always holds. This linear relationship is not trivial because a nondimensional analysis
of the shear-lag model (given in the Appendix) shows that, in general, the stresses in
metal and ceramic layers depend on two combinations of metal-eeramic layer properties,
Emtm/Eeteand EmtJEetm. From the numerical solution of the ordinary differential equations
for the shear-lag model. it is found that the dependence on the second combination.
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Fig. 5. The linear relation between critical metal--ceramic layer thickness ratio, (tm/t,)";,, and ceramic­
metal modulus ratio, E,IEm, for ao/(tm + t,) "" 1,5 and 20.

Emtc/Ectm, is extremely weak. The linear relationship between (tm/te)erit and Ee/Em is estab­
lished from lTrnax = lTo and their sole dependence on the first combination, Emtm/Eetc. There­
fore, the competition between multiple cracking and single-crack extension is determined
by their layer stiffness ratio, E~ntm/Eclc, such that
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(11)

leads to multiple cracking. The critical layer stiffness ratio, (Emtm/Ectc)crit' depends only on
the nondimensional pre-crack length, ao/(tm + tJ,

(12)

The nondimensional function, j~LAS' is shown in Fig. 3, along with the LEFM result, dLEFM

in eqn (6), for identical metal-eeramic moduli. [There is a rather weak dependence on the
Poisson's ratios of metal and ceramic in eqn (12). The differences in G"m.x for various
Poisson's ratios are less than 0.3%, so the Poisson's ratios are fixed as Vc = 0.3 and Vm = 0.33.]
The curve separates the damage mode in a metal-eeramic laminate predicted by the present
elastic model: multiple cracking dominates above the curve and single-crack extension
prevails below the curve.

Contrary to the LEFM results, the elastic model clearly shows a dependence of the
critical stiffness ratio on the pre-crack length. Moreover, the critical thickness ratio, (tm/ tc)crit'
estimated by the elastic model for Em = Ec is significantly larger than that by the LEFM
model. Although the discrepancies between the LEFM and elastic models in the prediction
of multiple cracking need to be compared with experimental data in order to check the
validity, the following conclusion from the elastic model always holds: the critical metal­
ceramic layer thickness ratio, (tm/tc)crit, must increase if the metal-eeramic moduli ratio,
Em/ Eo decreases.

4.2. Dugdale model
Metal plasticity plays an important role in the damage mode competition between

multiple cracking and single-crack extension. It reduces the stress concentrations near tips
of the pre-crack and renucleated crack, thus the load carried by the metal layer between
two cracks [layer m, in Fig. 1(a)] is shed to adjacent layers. This will increase the probability
of single-crack extension being the damage mode.

A simple plasticity model in fracture mechanics, the Dugdale model, is applied to the
shear-lag analysis to examine the effect of metal plasticity, in particular, yield stress. For
the first two unbroken metal layers [m] and m2 in Fig. 1(a)] i.e. the metal layer between
two cracks and the one next to the renucleated crack, the maximum stress in each metal
layer occurs at the crack plane (Le. plane y = 0) due to the stress concentration near the
pre-crack and renucleated crack. This has also been verified by the elastic model in the
previous section. As the remote loading increases, the first unbroken metal layer (Le. the
one between two cracks) yields first at y = 0, when the stress at y = 0 in the layer reaches
a critical value tJy and tJ y = pG"y, where G"y is the uniaxial tensile yield stress of the metal
and the nondimensional parameter p characterizes the constraint from the adjacent layers
in the laminate and reflects the stress triaxiality. For example, Ashby et al. (1989) established
that the constraint parameter p can be as high as five in constrained metal wires, which was
also verified by Huang et al. (1991) and Tvergaard et al. (1992). Two estimates for the
constraint parameter p for metal-eeramic laminates based on different approaches are given
in the Appendix. The first estimate is based on elastic fracture mechanics for laminates and
p is given by

(13)

where Vm is the Poisson's ratio of the metal. For a typical value, Vm = 0.33, p is 2.94, hence
the bridging stress in the metal layer between two cracks [layer m, in Fig. 1(a)] is almost
three times the yield stress. The second estimate for p is based on Prandtl's solution for
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(a)

(14)

(b)

Fig. 6. Dugdale shear-lag model: (a) plastic yielding in the first unbroken metal layer ; (b) plastic
yielding in the first and second unbroken metal layers.

plastic stress fields for a perfectly plastic solid containing one crack or two coplanar cracks.
The corresponding p is given by

2+n
p=-=2.97.

J3
which agrees very wen with the first estimate in eqn (13) for metals. It should be emphasized
that the constraint parameter p can be higher than three for a well-bonded metal-ceramic
interface and lower than three for a poorly bonded interface (Ashby et al., 1989).

For further increases in the applied stress, the stress at)' = 0 in the metal layer between
two cracks [layer mj in Fig. l(a)] is assumed to stay at tiy and the plastic flow is limited to
the plane y = 0 in the metal layer in such a fashion that the metal layer on two sides of the
crack plane starts to "separate" [Fig. 6(a)], as in the Dugdale model. Following the
"separation," the maximum stress (i.e. stress at y = 0) in the next metal layer [layer m2 in
Fig. l(a)] will continue to increase and reach tiy (= P(Ty) eventually with the increase in
applied load. As shown in Fig. 6(b), the metal layer next to the renucleated crack [layer mz
in Fig. l(a)J also becomes "separated" at plane y = 0, where the stress in the layer is fixed
at tiy • [It must be emphasized that the maximum stress in the third unbroken metal layer,
i.e. layer ms in Fig. 1(a), does not necessarily occur at the crack plane y = O. Therefore, the
Dugdale model cannot be extended to y = 0 in the third unbroken metal layer.]

It is evident that the Dugdale model has not captured the effect of strain hardening in
metal because metal plasticity is limited to the crack plane. Moreover, even for an elastic­
perfectly plastic metal, the present model overestimates the probability of single-crack
extension due to "separation" in this model. Though large plastic deformation in metal
layers near two cracks has been observed (Shaw et aI., 1993), the metal layers remain intact
such that the actual deformation around the crack plane in metal layers is less than that
estimated by the Dugdale model. Thus, the stress at y = 0 in the first unbroken ceramic
layer [layerc2 in Fig. I (a)], i.e. (To given in eqn (5), is overestimated. {There is another limit
to the level of applied stress in the Dugdale model because the maximum stress in the third
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unbroken metal layer [layer m3 in Fig. lea)], which may not occur at y = 0, must be less
than O'y.}

The applied stress plays a role in the competition between multiple cracking and single­
crack extension due to metal plasticity. Let 6

00 denote the remote strain, which is related to
applied stress by eqn (8). The plane-strain yield strain of the metal is related to uniaxial
tensile yield stress, ay, by

(15)

where Em = Em/(1- v~) is the plane-strain tensile modulus. The ratio of 6
00 ley must be less

than one to ensure that the remote field is elastic.
The governing equation is the same as the linear ordinary differential equation for the

elastic model. The boundary conditions are also the same as in eqns (7) and (8) except for
the first two unbroken metal layers, m 1 and m2 in Fig. lea) (i.e. layers between two cracks
and next to the renucleated crack). The boundary conditions at y = 0 in these two layers
are

or

a(y = 0) = fiy = pay

w(y = 0) = 0 if a(y = 0) < fiy = pay.

(16a)

(16b)

It is noted that Fig. 6(a) applies at relatively small remote loading and Fig. 6(b) comes into
playas remote loading increases.

The criterion for multiple cracking is the same as that in Sections 3 and 4.1 : multiple
cracking dominates if amax > ao, where amax is the maximum stress in the ceramic layer
containing the renucleated crack and a 0 is the stress at y = 0 in the next (unbroken) ceramic
layer. The condition separating multiple cracking from single-crack extension is then
amax = ao. These stresses have the form

00 III (tm ao Em) IV (tm ao Em)a -a 1: ----+a1: ----
max - max t' t +t 'E P y max t' t +t ' E

erne c effie c

a - a oo 1:1II (tm~ Em) + a 1:IV (tm~ Em)
0- 0 t' t +t' E P y 0 t' t +t' E 'eme c erne c

(17)

(18)

where 1:s are nondimensional functions.
It is observed that, for all levels of applied stress and metal yield stress, a OO lay (or

eooIty ), the conclusions established in the elastic model hold: for each metal-ceramic moduli
ratio, there exists a critical thickness ratio of metal-ceramic layers above which multiple
cracking dominates. Moreover, this critical thickness ratio is inversely proportional to the
metal-eeramic moduli ratio such that eqn (11) still holds, i.e. the competition between
multiple cracking and single-crack extension is governed by the metal-ceramic layer stiffness
ratio. However, (EmtmIEctc)crit now depends on not only the pre-crack length, aolUm + tc),
but also on the applied stress level, 6

00 ley, and the constraint parameter p through the
combination 6

00I(pty ), i.e.

(19)

where fOUGO is a nondimensional function. It is identical to the elastic model at small
applied load (i.e. no plastic yielding),
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The critical layer stiffness ratio, (Emtm/Ectc)crlt> versus the pre-crack length, ao/(tm+tc), is
shown in Fig. 7 for applied strain levels eoo/(piJy) = 1/6, 1/5, 1/4 and 1/3. At each level of
applied stress [i.e. eOOl(pBy)], (Tmax is larger tban (To above the corresponding curve, so
multiple cracking may occur. For small pre-cracks, all curves are coincidental with tbe
elastic results from Section 4.1 because the stress in metal layers does not reach ity (= p(Ty)

for small cracks and there is no plastic yielding in metal layers. The critical layer stiffness
ratio, (ErntmlEctc)Crit, deviates from that of the elastic model as the pre-crack length increases
for a fixed eOO/(pBy). Moreover, the critical layer stiffness ratio increases for long pre-cracks,
as opposed to a monotonic decreasing curve from the elastic model. The region governed
by multiple cracking shrinks when plastic yielding occurs in metal layers. Therefore, plastic
yielding in metals does not help in activating the multiple-cracking mode.

4.3. Plastic model
The Dugdale model in the previous section did not accurately account for the effect of

plastic yielding in metal layers because the plastic deformation was assumed to be limited
to a single plane. The model also neglected the plastic hardening of metals. These effects
are studied in this section.

The metal is assumed to have an elastic-linear hardening stress-strain relation in
uniaxial tension:

(Ty
e>­

Em
(21)

where (Ty is the tensile yield stress, and Em and Et are elastic and linear hardening moduli,
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respectively. The shear-lag analysis leads to a set ofnonlinear ordinary differential equations
(see the Appendix for details), and the boundary conditions remain the same as in eqn (7).
The remote field is elastic (i.e. eOO < By), so eqn (8) holds.

Plastic zones grow in metal layers as the applied stress increases. The plastic zone's
size, Lp, in the metal layer between two cracks [layer m t in Fig. lea)] versus the applied
strain, eoo/By, is shown in Fig. 8 for Em/Ee = I; tm/te = 1; and ao/(tm+te) = 5 and several
values of the plastic hardening modulus, Et/Em = 0.01,0.05 and 0.1. The plastic zone's size
based on a small-seale-yielding estimation in the LEFM model (Kannien and Popelar,
1985),

r = ~(KtiP)2
p 3n l1y , (22)

is also shown in Fig. 8, where K tiP is the pre-crack tip stress intensity factor. These two
models show reasonable agreement.

The criterion governing the damage mode as multiple cracking or single-crack exten­
sion is the same as in previous sections, I1max = 0'0' They have the form

(23)

(24)

where the last three arguments in the nondimensional functions L~ax and L~ represent the
plastic hardening and yielding of metal and the applied stress leveL Though L~ax and L~

depend on many parameters, the numerical solution of I1max = 0'0 to determine the critical
condition for multiple cracking shows that eqn (II) always holds, i.e. the competition of



Multiple cracking in metal--ceramic laminates 2765

18

.. 1/6

1614

.. 1/5

64 81012

eo/(lm + te)
Fig. 9. Critical metakeramic layer stiffness ratio, (EmlmfEclc)cri" versus pre-crack length, aol(tm+!J,
for e'"{(plfy ) 1/6, 1/5, 1{4 and 1/3; (jy{Em "" 0.003; and three plastic hardening levels, EtlEm"" 0.01

(dotted lines), 0.05 (dashed-dotted lines and 0.1 (dashed lines) in the plastic model.

10

9

8

- 7
~j_o

w'" 6
'----'

5

4

3

2
0 2

the multiple-cracking and single-crack extension damage modes is governed by the metal­
ceramic layer stiffness ratio. The critical layer stiffness ratio has the form

(25)

It is identical to the elastic function'!ELAS' if EtlEm= 1, or (fy/Em= 00, or "co/(pty) = O.
The critical layer stiffness ratios, (EmtmIEctc)erit' versus pre-crack length, aolUm+ te), are
shown in Fig. 9 for fry/Em =:= 0.003; several applied strain levels, eCO/(pey) = 116, 115, 1/4
and 1/3; and several plastic hardening levels, EtlEro = 0.0 I, 0.05 and 0.1. For each applied
strain, eOO/(pey), curves for various hardening moduli start to deviate from the elastic curve
at the same point, corresponding to plastic yielding in the metal layer. These curves exhibit
a trend similar to that in Fig. 7 for the Dugdale model, i.e. all curves coincide at small pre­
crack lengths and the region controlled by multiple cracking shrinks as the applied stress
increases. However, a comparison of Fig. 9 with Fig. 7 shows that the work hardening of
metals can significantly enlarge the muItiple-cracking domain. The probability of activating
multiple cracking as the damage mode is increased greatly for a metal with strong plastic
hardening (e.g. large tangent modulus Et ). The curves in Fig. 9 for weak work hardening
(EtiEm= 0.01) are very close to the Dugdale model results (Fig. 7), which means the
Dugdale model is a good model for an elastic-perfectly plastic solid. Based on these
observations, one can conclude tbat plastic hardening helps activate the multiple-cracking
mode, while plastic yielding does the opposite.
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APPENDIX

Integral equations for metals and ceramics with identical elastic properties
The metal-ceramic laminate can be considered as a uniform medium if the metal and ceramic have the same

elastic properties. Then, each crack can be modeled as a continuous distribution, with the dislocation densities to
be determined (Rice, 1968). The laminate is traction-free on the left boundary and subject to remote axial stress,
a" (Fig. I(a)]. The stress field induced by an edge dislocation at (~, 0) in a half-plane (traction-free on the
boundary of the half-plane) can be found in Suo (1989). In particular, the stress component in the laminate
direction at a point (x, 0) is

(AI)

where ao is the pre-crack length and the origin (0, 0) is set at the pre-crack tip, as shown in Fig. I(a). Then, the
traction-free condition at the surfaces of pre-crack and renucleated cracks leads to

(A2)

for -an < x < 0 (pre-crack)

tm < x < tm +( (renucleated crack)

where <5(1) and <5(2) are the crack opening at the pre-crack and renucleated crack, respectively. These integral
equations of <5(1) and <5(2) are solved numerically along the lines proposed by Erdogan et at. (1973).

Shear-lag analysis ofmetal-ceramic laminates
The shear-lag analysis was initially developed for single or multiple stringer panels in aerospace structures

(e.g. Kuhn, 1956). It has been successfully applied to metal-ceramic laminates (e.g. Cao and Evans, 1991). Each
layer in the laminate is subject to remote applied loading and shear tractions at the interfaces with neighboring
layers (Fig. I(a)]. Let n be the layer number, and a metal layer and a ceramic layer correspond to an odd and even
number of n, respectively. For example, layer I is the leftmost metal layer of the laminate.

The axial stress in each layer is averaged over the layer thickness and is then independent of coordinate x. At
each cross section (Le. each y) in a layer, overall equilibrium requires

(A3)

where tn is the thickness of the layer, i.e. tn = tm if n is odd and tn = t, if n is even; T~ and T~ are shear tractions
(downward) at the left and right boundaries of the nth layer, and TT = 0 due to traction-free conditions at the
leftmost boundary of the laminate [Fig. I(a)]. Let wn(y) be the axial displacement at the center of the cross section
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and w~ and w: be the axial displacement at the interfaces between layer n and its two neighboring layers (n-I
and n + I, respectively). The shear tractions are related to shear strains and displacements by

(M)

where Gnis the shear modulus in the layer, Gn = Gm if n is odd, and Gn= G, if n is even.
The continuity of displacements and shear tractions at metal-;;eramic interfaces requires

(AS)

(A6)

(since the rs are assumed downward!). Equations (A4-A6) can be rearranged to eliminate the displacements at
interfaces,

The substitution of eqn (A7) into eqn (A3) eliminates shear tractions,

t dan = 2 _2_\1.-,,-'n_-_\1....:.'n,---...:.I_-_\1....:.'n,-,+...:.1
n dy tm 10

-+­
Gm G,

The elastic stress-strain relation in the nth layer is

_ dW
n

(In = En -
d

'
y

(A7)

(A8)

(A9)

where En is the plane-strain tensile modulus, i.e. En = Em if n is odd and En = E, if n is even. Equations (A8) and
(A9) form a set of linear ordinary differential equations governing an and w.. For plastic deformation in metal
layers, the stress-strain relation is

- dWn=E ­
m dy

n even

dWn
n odd and dY ,;; By

_ dW
n

_ _ _ dw
= E'-d + (Em-E,)By n odd and -dn> By

y Y
(AlO)

where E, is the plane-strain hardening modulus, and By, as defined in eqn (15), is the plane-strain yield strain. The
governing equations, (A8) and (AlO), become a set of nonlinear ordinary equations.

Estimates of constraint parameter for a metal-ceramic laminate
Rubinstein (1985) studied the interaction between a macroscopic crack and a coplanar microcrack in a

homogeneous solid. His closed-form solution shows that, within the ligament between two cracks, the stress
component parallel to the cracks, am is the same as the component normal to the crack direction, a yy . Thus, the
stress state in the ligament between cracks is

(Jxx = cry}', (7=: = 2vO"yp others = 0, (All)

where the out-of-plane stress component is obtained by the plane-strain condition B" = O. The numerical solution
of the integral equation in eqn (A2) shows that the conclusion established in eqn (A II) approximately holds for
the configuration in Fig. I(a). Hence, the effective stress is

(AI2)

Recall that, in the Dugdale model, the effective stress ahead of the crack is set equal to the uniaxial yield stress,
ay, of the material. For plane-stress conditions (a" = 0), it leads to ayJ' = ay. For plane-strain conditions, as in the
present study, eqn (AI2) gives

ay
a yy = 1-2v' (A 13)

which leads to the constraint parameter p as given in eqn (13).
The estimate in eqn (AI3) is based on elastic fracture mechanics. The estimate in the following includes the

effect of metal plasticity. Prandtl's field (e.g. Hill, 1950) provides the stress state near a crack tip or between two

SAS31:20-B
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(AI4)

cracks in an elastic-perfectly plastic solid. In particular, the stress component normal to the crack direction within
the ligament between two cracks is

0"1'1 = (2+n)Ty = (2+1t)~,
j3

where T y = (Jy/j3 is the yield stress in pure shear. Hence, the estimate of pin eqn (14) is obtained. For a typical
value of Poisson's ratio, v = 0.33, the two estimates in eqns (13) and (14), or in eqns (AI3) and (A14), agree very
well.


